<span style='color:red'>ROHM</span>’s Flexible Brushed DC Motor Driver ICs for a Wide Range Applications
  ROHM has developed two new motor driver ICs for brushed DC motors, BD60210FV (20V, 2ch) and BD64950EFJ (40V, 1ch). They are intended for use in home and office appliances such as refrigerators, air conditioners, printers, and robotic vacuum cleaners.  In recent years, the electrification of consumer and industrial equipment - especially white goods - has accelerated, increasing the demand for energy-efficient brushed DC motors. At the same time, motor drivers are expected to support multiple applications and use cases while reducing external component count and size.  To address these needs, these new products adopt highly versatile packages, making them ideal not only for new platform designs but also for redesigns and derivative products. Additionally, they achieve ultra-low standby current (Typ: 0.0μA, Max: 1.0μA), significantly contributing to power savings during standby operation.  The BD60210FV can function as a dual H-bridge (2ch) motor driver with direct PWM control, capable of driving two DC brush motors, a bipolar stepper motor driver, or solenoid driver. Its H-bridge circuit configuration eliminates the need for a boost circuit, minimizing external components and contributing to space-saving and simplified design. It supports input voltage from 8V to 18V and 1A/phase continuous current and 4A/phase peak current.  The BD64950EFJ features a single H-bridge (1ch) that supports both direct PWM control and constant current PWM control. Its low on-resistance design reduces heat generation, enabling efficient motor drive. With a 40V withstand voltage and 3.5A continuous current (6A peak), it is suitable for high-powered, high-voltage (24V) DC brush motor applications.  Both products are now in mass production (sample price: $1.5/unit, tax excluded). Online sales have also started, and they (BD60210FV, BD64950EFJ) can be purchased from online distributors such as AMEYA360. Evaluation boards (BD60210FV-EVK-001, BD64950EFJ-EVK-001) are also available to support application development and design.  ROHM will continue to expand its motor drive solutions for consumer and industrial equipment, contributing to greater comfort and energy savings in society.  Application Examples  •Consumer Equipment: Refrigerators (ice maker rotation, fan valve control), Air conditioners (louver control), Printers (carriage movement), Robotic vacuum cleaners (brush rotation), Water heaters and rice cookers (valve control), Humidifiers (fan control) etc.  •Industrial Equipment: Automatic doors and shutters (operation control), Small conveyors (transport control), Power tools (rotation control), Other small motor control applications, etc.  Terminology  H-Bridge  An electronic circuit used to control the rotation direction of a motor. It is called an H-bridge because it comprises four electronic switches (MOSFETs) whose arrangement resembles the letter “H”.  Direct PWM Control  A method where a PWM (Pulse Width Modulation) signal is directly applied to the H-bridge to control motor speed. The voltage supplied to the motor is adjusted by the PWM duty cycle. This method offers a simple circuit configuration and high responsiveness.  Constant Current PWM Control  A control method that uses PWM to maintain a constant current to the motor. It allows the motor to maintain torque even at low speeds and is used in applications requiring precise control.
Key word:
Release time:2025-12-18 15:39 reading:525 Continue reading>>
<span style='color:red'>ROHM</span> launches SiC MOSFETs in TOLL package that achieves both miniaturization and high-power capability
  ROHM has begun mass production of the SCT40xxDLL series of SiC MOSFETs in TOLL (TO-Leadless) packages. Compared to conventional packages (TO-263-7L) with equivalent voltage ratings and on-resistance, these new packages offer approximately 39% improved thermal performance. This enables high-power handling despite their compact size and low profile. It is ideal for industrial equipment such as server power supplies and ESS (Energy Storage Systems) where the power density is increasing, and low-profile components are required to enable miniaturized product design.  In applications like AI servers and compact PV inverters, the trend toward higher power ratings is occurring simultaneously with the contradictory demand for miniaturization, requiring power MOSFETs to achieve higher power density. Particularly in totem pole PFC circuits for slim power supplies, often called “the pizza box type,” stringent requirements demand thicknesses of 4mm or less for discrete semiconductors.  ROHM's new product addresses these needs by reducing component footprint by approximately 26% and achieving a low profile of 2.3mm thickness – roughly half that of conventional packaged products. Furthermore, while most standard TOLL package products are limited by a drain-source rated voltage of 650V, ROHM's new products support up to 750V. This allows for lower gate resistance and increased safety margin for surge voltages, contributing to reduced switching losses.  The lineup consists of six models with on-resistance ranging from 13mΩ to 65mΩ, with mass production started in September 2025 (sample price: $37.0/unit, tax excluded).   Product Lineup  Application Examples  ・Industrial equipment: Power supplies for AI servers and data centers, PV inverters, ESS (energy storage systems)  ・Consumer equipment: General power supplies  EcoSiC™ Brand  EcoSiC™ is a brand of devices that utilize silicon carbide (SiC), which is attracting attention in the power device field for performance that surpasses silicon (Si). ROHM independently develops technologies essential for the evolution of SiC, from wafer fabrication and production processes to packaging, and quality control methods. At the same time, we have established an integrated production system throughout the manufacturing process, solidifying our position as a leading SiC supplier.• EcoSiC™ is a trademark or registered trademark of ROHM Co., Ltd.  Terminology  Totem Pole PFC Circuit  A highly efficient power factor correction circuit configuration that reduces diode losses by using MOSFETs as rectifier elements. The adoption of SiC MOSFETs enables high voltage withstand capability, high efficiency, and high-temperature operation for the power supply.
Key word:
Release time:2025-12-04 17:10 reading:533 Continue reading>>
<span style='color:red'>ROHM</span> launches RPR-0730: High-Speed, High-Precision Optical Sensor Featuring VCSEL Technology
  ROHM has developed the “RPR-0730”, analog compact optical sensor, capable of high-precision detection of fast-moving objects. This sensor can be widely utilized in consumer and industrial equipment applications, including printers and conveyor systems.  As industrial and office equipment becomes increasingly sophisticated and automated, there is a growing demand for improved sensing technology accuracy. In applications such as label printers, material or product transport systems, and copiers, the need for technology that can identify objects more accurately is essential. Moreover, increased speed driven by productivity improvements makes the introduction of high-speed, high-precision optical sensors crucial.  The RPR-0730 is a compact reflective optical sensor (photo reflector). It employs an infrared VCSEL, which offers higher directionality than LEDs, enabling detection of finer objects. Furthermore, by using a phototransistor with analog output as the receiver, the sensor achieves a response time of 10µs. This dual combination enables high-speed, accurate identification of fine lines as narrow as 0.1mm - previously difficult to detect with conventional LED light sources. As an addition to the existing digital output sensor “RPR-0720” series, RPR-0730 expands capability to applications requiring faster sensing, such as print detection in copiers, label printers, or rotational detection in motors and gears.  The package is ultra-compact at 2.0mm × 1.0mm × 0.55mm and employs a visible light filtering resin to suppress interference from ambient light or sunlight. This enables stable detection even in environments with varying light conditions, such as factories or outdoors. The sensor can also be easily integrated into equipment requiring installation in small, confined spaces, like inside conveyors or precision instruments, making it suitable for a wider range of applications.  Mass production of the new product commenced in October 2025 (sample price: $2.2/unit, tax excluded).  Going forward, ROHM will continue to leverage its development expertise in light-emitting and light-receiving elements to create sensing products that meet customer needs, contributing to the miniaturization and enhanced convenience of various devices.  Application Examples  •Print detection, paper feed/jam detection in label printers, copiers, shredders, etc.  •Object detection of packages/specimens, workpiece position detection in conveyance systems, automatic inspection equipment, etc.  •Motor/gear rotational detection in industrial robots, etc.  Terminology  Photo reflector  A type of optical sensor combining an emitting element and a receiving element. It illuminates an object and detects the intensity of the reflected light to measure the presence or distance of an object.  VCSELL  Abbreviation for Vertical Cavity Surface Emitting LASER. A type of laser light source, it is a semiconductor laser that can emit light directly from its surface. Compared to LEDs, it offers higher directionality and is suitable for high-precision sensing. Originally adopted for optical communication applications, its use as a light source for proximity sensors and distance sensors has been expanding in recent years.  Phototransistor  A transistor-type photoelectric conversion element that converts optical signals into electrical signals. It integrates a photodiode and a transistor, controlling the base current with light to output an amplified collector current.
Key word:
Release time:2025-12-04 17:04 reading:439 Continue reading>>
<span style='color:red'>ROHM</span> launches wide SOA MOSFET for AI servers in compact 5×6mm package
  ROHM has developed the 100V power MOSFET - RS7P200BM - achieving industry-leading SOA in a 5060-size (5.0mm × 6.0mm) package. This product is ideal for hot-swap circuits in AI servers using 48V power supplies as well as for industrial power supplies requiring battery protection.  The rapid evolution and widespread adoption of AI technologies have increased the demand for stable operation and improved power efficiency in servers equipped with generative AI and high-performance GPUs. Particularly in hot-swap circuits, power MOSFETs with wide SOA are essential to handle inrush current and overload conditions, ensuring stable operation. Furthermore, within data centers and AI servers, the transition towards 48V power supplies, which offer superior power conversion efficiency, is progressing against a backdrop of energy conservation. This necessitates the development of high-voltage, high-efficiency power supply circuits capable of meeting these demands.  Therefore, ROHM has expanded its line-up of 100V power MOSFETs ideal for hot-swap circuits in AI servers to meet market demand. The new RS7P200BM adopts a compact DFN5060-8S (5060 size) package, enabling even higher density mounting compared to the AI server power MOSFET ‘RY7P250BM’ in the DFN8080-8S (8.0mm × 8.0mm size) package, which ROHM has released in May 2025.  The new product achieves a low on-resistance (RDS(on)) of 4.0mΩ (conditions: VGS=10V, ID=50A, Ta=25°C) while maintaining wide SOA of 7.5A at a pulse width of 10ms and 25A at 1ms under operating conditions of VDS=48V. This balance of low on-resistance and wide SOA, typically a trade-off relationship, helps suppress heat generation during operation, thereby improving server power supply efficiency, reducing cooling load, and lowering electricity costs.  Mass production of the new product began in September 2025 (sample price: $5.5/unit, excluding tax).  ROHM will continue to expand its product lineup for 48V power supplies, which are increasingly adopted in applications such as AI servers. By providing highly efficient and reliable solutions, we will contribute to reducing power loss and cooling loads in data centers, as well as enhancing the high reliability and energy efficiency of server systems.  Application Examples  •48V system AI servers and data center power hot-swap circuits  •48V system industrial power supplies (forklifts, power tools, robots, fan motors, etc.)  •Battery-powered industrial equipment such as AGVs (Automated Guided Vehicles)  •UPS, emergency power systems (battery backup units)  EcoMOS™ Brand  EcoMOS™ is ROHM's brand of silicon power MOSFETs designed for energy-efficient applications in the power device sector. Widely utilized in applications such as home appliances, industrial equipment, and automotive systems, EcoMOS™ provides a diverse lineup that enables product selection based on key parameters such as noise performance and switching characteristics to meet specific requirements.  ・EcoMOS™ is a trademark or registered trademark of ROHM Co., Ltd.  Terminology  SOA(Safe Operating Area)  The voltage and current range within which a device can operate safely without damage. Operation beyond this safe operating area may cause thermal runaway or damage; therefore, consideration of the SOA is essential, particularly in applications where inrush current or overcurrent may occur.  Hot-swap circuit  The complete circuitry supports the hot-swap function, which enables the removal or insertion of components while the device's power supply remains active. Comprising MOSFETs, protective elements, and connectors, it suppresses inrush currents occurring during component insertion and provides overcurrent protection, thereby ensuring the safe operation of the system and connected components.  Inrush Current  The high current exceeds the rated current value that flows momentarily when switching on electronic equipment. Controlling this prevents damage to devices and stabilizes the system by reducing the load on components within the power supply circuit.  On-resistance(RDS(on))  The resistance value between the drain and source terminals when the MOSFET is in operation (on). The lower the value, the less power loss occurs during operation.
Key word:
Release time:2025-11-28 17:28 reading:564 Continue reading>>
<span style='color:red'>ROHM</span>’s Three-Phase Brushless DC Motor Gate Driver Achieving FET Heat Reduction while Suppressing EMI
  ROHM has developed the “BD67871MWV-Z” three-phase brushless DC motor gate driver for medium voltage applications (12 to 48V systems). By incorporating ROHM’s proprietary gate drive technology TriC3™, it greatly reduces FET’s switching loss while maintaining low EMI – traditionally a trade-off in motor driver ICs.  Motors account for approximately 60% of global electricity consumption, making control technology which affects energy efficiency, increasingly critical. In 12V to 48V motor drive applications, a simple configuration where an MCU controls three gate drivers has been the mainstream. However, in recent years, demands for high efficiency and precise control have grown, accelerating the adoption of solutions combining an MCU with an integrated three-phase motor driver. Further, a technical challenge in three-phase motor drivers has been the trade-off between “power consumption reduction” and “noise / EMI (electro-magnetic interference) reduction,”.  BD67871MWV-Z features ROHM's proprietary Active Gate Drive technology “TriC3™”, which rapidly senses voltage information from the external power FETs and adjust gate drive current accordingly in real-time. This greatly reduces FETs’ switching loss (and hence heat generation) FET power consumption during switching while simultaneously suppressing ringing to achieve low EMI.  Compared to ROHM's conventional constant-current drive products, TriC3™ gate drive has been demonstrated in actual motors that FET heat generation by approximately 35% while maintaining equivalent EMI levels. Furthermore, BD67871MWV-Z adopts UQFN28 package and pin layout which are commonly used in motor driver ICs for medium-voltage industrial equipment applications, contributing to reduced engineering effort required in circuit modifications and new designs.  Mass production of the new product commenced in September 2025 (sample price: $5.5/unit, tax excluded).  ROHM also offer general-purpose motor drivers (BD67870MWV-Z, BD67872MWV-Z) with the same package and pin configuration as the new product, designed for constant-voltage drive. From general-purpose types to the value-added types featuring the new TriC3™, we offer a comprehensive product lineup to supports a wide variety of applications and use cases. We are committed to contributing to improved motor efficiency, enhanced application functionality, and reduced power consumption.  Application Examples  •Industrial Equipment: Various motors such as electric drills/drivers and industrial fans  •Consumer Appliances: Various motors used in vacuum cleaners, air purifiers, air conditioners, ventilation fans and E-bikes (electric-assist sports bicycles)  TriC3™  A multi-step constant current drive technology developed by ROHM. By controlling gate current in three steps, it achieves high-speed, high-efficiency operation while minimizing EMI by suppressing ringing.  • TriC3™ is a trademark or registered trademark of ROHM Co., Ltd.  Terminology  EMI (Electromagnetic Interference)  EMI is used as an indicator of how much noise a product generates during operation, potentially causing malfunctions in surrounding ICs or systems. “Low EMI” means the product generates less noise.  Ringing  High-frequency oscillations or overshoot occurring during switching. This arises from the resonation between inductance and capacitance, including parasitic elements in the circuit. In the context of motor driving, ringing happens when the power MOSFETs are turned on and off.
Key word:
Release time:2025-11-21 16:54 reading:544 Continue reading>>
Now Standard in Siemens’ Flotherm™! <span style='color:red'>ROHM</span> Expands Its High-Accuracy EROM Models for Shunt Resistors
  ROHM has expanded its lineup of EROM (Embeddable BCI-ROM) models for shunt resistors and has made them available on ROHM’s website. In addition, these models are now standard in Siemens’ electronic thermal design software, Simcenter™ Flotherm™*.  ROHM’s shunt resistors are widely used in automotive and industrial equipment applications, where their high-accuracy current detection and superior reliability are highly valued. We have added the PMR series to the EROM lineup, alongside the previously available PSR series.  The EROM models achieve high accuracy with a measurement deviation within ±5% for both surface temperature (ΔT) and thermal resistance, enabling thermal analysis that closely reflects actual operating conditions. This contributes to improved simulation accuracy in the thermal design phase and enhances overall development efficiency.  Furthermore, by standard implementation in Simcenter™ Flotherm™, these models make it easier for component manufacturers and set manufacturers to share thermal analysis data. This allows for highly accurate and efficient simulations while maintaining the confidentiality of proprietary information.  Going forward, ROHM will continue to enhance the support for customers’ design and development activities through both its high-performance components and advanced simulation models.  *Standard in Simcenter™ Flotherm™ 2510 and later.  Terminology  EROM (Embeddable BCI-ROM)  A reduced-order model that can be used within Simcenter™ Flotherm™ to perform thermal simulations. It allows sharing while keeping internal component structures (confidential design data) hidden, enabling fast and highly accurate analysis.  Simcenter™ Flotherm™  A CFD (Computational Fluid Dynamics) simulator developed by Siemens, specialized in thermal and cooling design for electronic devices. It enables fast and accurate thermal analysis from the early design stage through validation, supporting exceptionally reliable thermal design.  Simcenter™ Flotherm™ is a registered trademark of Siemens.
Key word:
Release time:2025-11-21 16:50 reading:482 Continue reading>>
<span style='color:red'>ROHM</span> Develops Breakthrough Schottky Barrier Diode Combining Low VF and IR for Advanced Image Sensor Protection
  ROHM has developed an innovative Schottky barrier diode that overcomes the traditional VF / IR trade-off. This way, it delivers high reliability protection for a wide range of high-resolution image sensor applications, including ADAS cameras.  Modern ADAS cameras and similar systems require higher pixel counts to meet the demand for greater precision. This has created a growing concern – the risk of damage caused by photovoltaic voltage generated under light exposure during power OFF. While low-VF SBDs are effective countermeasures, low IR is also essential during operation to prevent thermal runaway. However, simultaneously achieving both low VF and IR has been a longstanding technical challenge. ROHM has overcome this hurdle by fundamentally redesigning the device structure – successfully developing an SBD that combines low VF with low IR which is ideal for protection applications.  The RBE01VYM6AFH represents a novel concept: leveraging the low-VF characteristics of rectification SBDs for protection purposes. By adopting a proprietary architecture, ROHM has achieved low IR that is typically difficult to realize with low VF designs. As a result, even under harsh environmental conditions, the device meets market requirements by delivering VF of less than 300mV (at IF=7.5mA even at Ta=-40°C), and an IR of less than 20mA (at VR=3V even at Ta=125°C.) These exceptional characteristics not only prevent circuit damage caused by high photovoltaic voltage generated when powered OFF, but also significantly reduce the risk of thermal runaway and malfunction during operation.  The diode is housed in a compact flat-lead SOD-323HE package (2.5mm × 1.4mm / 0.098inch × 0.055inch) that offers both space efficiency and excellent mountability. This enables support for space-constrained applications such as automotive cameras, industrial equipment, and security systems. The RBE01VYM6AFH is also AEC-Q101 qualified, ensuring suitability as a protection device for next-generation automotive electronics requiring high reliability and long-term stability.  Going forward, ROHM will focus on expanding its lineup with even smaller packages to address continuing miniaturization demands.  Key Specifications  Application Examples  Image sensor-equipped sets such as ADAS cameras, smart intercoms, security cameras, and home IoT devices.  Terminology  Photovoltaic Voltage  A term commonly used with optical sensors, referring to the voltage produced when exposed to light. In general, the stronger the light intensity or higher the pixel count the greater voltage generated.
Key word:
Release time:2025-10-27 16:49 reading:605 Continue reading>>
<span style='color:red'>ROHM</span> Publishes White Paper on Power Solutions for Next-Generation 800 VDC Architecture Aligned with the Industry's 800 VDC Roadmap to Enable Gigawatt-Scale AI Infrastructure
  ROHM has released a new white paper detailing advanced power solutions for AI data centers based on the novel 800 VDC architecture, reinforcing its role as a key semiconductor industry player in driving system innovation.  As part of the collaboration announced in June 2025, the white paper outlines optimal power strategies that support large-scale 800 VDC power distribution across AI infrastructure.  The 800 VDC architecture represents a highly efficient, scalable power delivery system poised to transform data center design by enabling gigawatt-scale AI factories. ROHM offers a broad portfolio of power devices, including silicon (Si), silicon carbide (SiC), and gallium nitride (GaN), and is among the few companies globally with the technological expertise to develop analog ICs (control and power ICs) capable of maximizing device performance.  Included in the white paper are ROHM’s comprehensive power solutions spanning a wide range of power devices and analog IC technologies, supported by thermal design simulations, board-level design strategies, and real-world implementation examples.  [Access the white paper here]  Key Highlights of the White Paper• Rising Rack Power Consumption: Power demand per rack in AI data centers is rapidly increasing, pushing conventional 48V/12V DC power supply systems to their limits.  • Shift to 800 VDC: Transitioning to an 800 VDC architecture significantly enhances data center efficiency, power density, and sustainability.  • Redefined Power Conversion: In the 800 VDC system, AC-DC conversion (PSU), traditionally performed within server racks, is relocated to a dedicated power rack.  • Essential Role of SiC and GaN: Wide bandgap devices are critical for achieving efficient performance. With AC-DC conversion moved outside the IT rack, higher-density configurations inside the IT rack can better support GPU integration.  • Optimized Conversion Topologies: Each conversion stage—from AC to 800 VDC in the power rack and from 800 VDC to lower voltages in the IT rack—requires specialized solutions. ROHM’s SiC and GaN devices contribute to higher efficiency and reduced noise while decreasing the size of peripheral components, significantly increasing power density.  • Breakthrough Device Technologies: ROHM’s EcoSiC™ series offers industry-leading low on-resistance and top-side cooling modules ideal for AI servers, while the EcoGaN™ series combines GaN performance with proprietary analog IC technologies, including Nano Pulse Control™. This allows for stable gate drive, ultra-fast control, and high-frequency operation–features that have earned strong market recognition.  The shift to 800 VDC infrastructure is a collective industry effort. ROHM is working closely with NVIDIA, data center operators, and power system designers to deliver essential wide bandgap semiconductor technologies for next-generation AI infrastructure. Through strategic collaborations, including a 2022 partnership with Delta Electronics, ROHM continues to drive innovation in SiC and GaN power devices, enabling powerful, sustainable, and energy-efficient data center solutions.  ROHM’s EcoSiC™  EcoSiC™ is ROHM’s brand of devices that utilize silicon carbide, which is attracting attention in the power device field for performance that surpasses silicon. ROHM independently develops technologies essential for the advancement of SiC, from wafer fabrication and production processes to packaging, and quality control methods. At the same time, we have established an integrated production system throughout the manufacturing process, solidifying our position as a leading SiC supplier.  ・EcoSiC™ is a trademark or registered trademark of ROHM Co., Ltd.
Key word:
Release time:2025-10-15 11:50 reading:799 Continue reading>>
<span style='color:red'>ROHM</span> has Developed New Smart Switches Optimized for Zonal Controllers
  ROHM has developed six new high-side Smart Switches (Intelligent Power Devices, short: IPDs) BV1HBxxxEFJ series (BV1HB008EFJ-C, BV1HB012EFJ-C, BV1HB020EFJ-C, BV1HB040EFJ-C, BV1HB090EFJ-C, BV1HB180EFJ-C) with highly accurate current sensing capability and ON resistances from 9 mΩ to 180 mΩ. They are ideal for protecting loads and subsystems from abnormalities such as overcurrent, overvoltage, and overtemperature, ensuring reliable operation and safeguarding sensitive components in automotive lighting, body control such as, door locks and power windows. Extensive diagnostic capabilities, e.g., open load and reverse battery detection, further enhances safety and reliability.  Vehicle electronic control systems are becoming increasingly sophisticated with the advancement of autonomous driving and electric vehicles (EVs). This evolution has heightened the importance of electronic protection from a functional safety standpoint, driving the shift toward Zonal Controllers architecture that manages vehicle functions in designated zones. As a result, the use of smart switches for electronic load protection and control is rapidly growing.  Zonal controllers must each manage a large number of loads, but conventional smart switches often lack the drive capability required for high-capacitance loads. ROHM’s new smart switches address this challenge, delivering key performance attributes such as low ON resistance and high inductive energy clamp while significantly improving capacitive load drive capability. By commercializing high-performance smart switches tailored to zonal controllers’ requirements, ROHM is contributing to automotive electrification and the elimination of mechanical fuses.  The new products feature exceptional high-capacitance load driving capability, maximizing performance at the critical interface between Zonal Controllers and output loads (including various ECUs). Leveraging proprietary cutting-edge process technology makes it possible to achieve both low ON resistance and high inductive energy clamp – two characteristics typically involve a trade-off. The result is a well-balanced integration of three key performance metrics: drive capability, ON resistance, and energy tolerance. This enhances system design safety, efficiency, and reliability. The devices also incorporate a best-in-class* high-precision current sensing function (±5%) that provides effective protection for harnesses connected to output loads. At the same time, the compact, high heat dissipation HTSOP-J8 package ensures excellent design versatility.  Going forward, ROHM remains committed to improving safety, security, and energy efficiency in the automotive field by continuing to develop high reliability, high performance devices.  *ROHM study on high-side Smart Switches - September 30th, 2025  Application Examples  Body applications, powertrain/inverter systems, other switch-related circuits  Terminology  Zonal Controllers  An emerging design concept in automotive electronic architecture, zonal controllers represent a shift away from the conventional approach of assigning dedicated ECUs for each function, such as lighting, door locks, and power windows. Instead, the vehicle is divided into zones, with a zonal controller manages multiple functions in its zone.  Intelligent Power Devices (IPD) / Smart Switches  Smart power switches are semiconductor devices that electronically control the delivery of power by turning it on and off, while also providing integrated protection and diagnostic features such as overcurrent, overvoltage, thermal shutdown, current sensing, and open load detection to enhance system reliability and safety.  Capacitive Load Driving Capability  A technical term referring to the ability of an electronic circuit or semiconductor device to operate reliably when driving capacitive loads. It is especially important in circuit configurations involving zone ECUs and their output stages (including individual ECUs) where large electrolytic capacitors are commonly used. If this capability is inefficient, inrush current cannot be adequately suppressed, leading to overheating that can result in malfunctions or reduced operational lifespan.
Key word:
Release time:2025-09-30 16:29 reading:595 Continue reading>>
<span style='color:red'>ROHM</span> and Infineon collaborate on silicon carbide power electronics packages to enhance flexibility for customers
  ROHM and Infineon Technologies AG have signed a Memorandum of Understanding to collaborate on packages for silicon carbide (SiC) power semiconductors used in applications such as on-board chargers, photovoltaics, energy storage systems, and AI data centers. Specifically, the partners aim to enable each other as second sources of selected packages for SiC power devices, a move which will increase design and procurement flexibility for their customers. In the future, customers will be able to source devices with compatible housings from both ROHM and Infineon. The collaboration will ensure seamless compatibility and interchangeability to match specific customer needs.  "We are excited about working with ROHM to further accelerate the establishment of SiC power devices," said Dr. Peter Wawer, Division President Green Industrial Power at Infineon. "Our collaboration will provide customers with a wider range of options and greater flexibility in their design and procurement processes, enabling them to develop more energy-efficient applications that will further drive decarbonization."  "ROHM is committed to providing customers with the best possible solutions. Our collaboration with Infineon constitutes a significant step towards the realization of this goal, since it broadens the portfolio of solutions," said Dr. Kazuhide Ino, Member of the Board, Managing Executive Officer, in charge of Power Devices Business at ROHM. "By working together, we can drive innovation, reduce complexity, and increase customer satisfaction, ultimately shaping the future of the power electronics industry."Dr. Peter Wawer, Division President Green Industrial Power at Infineon (left)and Dr. Kazuhide Ino, Member of the Board and Managing Executive Officer at ROHM  As part of the agreement, ROHM will adopt Infineon’s innovative top-side cooling platform for SiC, including TOLT, D-DPAK, Q-DPAK, Q-DPAK dual, and H-DPAK packages. Infineon's top-side cooling platform offers several benefits, including a standardized height of 2.3 mm for all packages. This facilitates designs and reduces system costs for cooling, while also enabling better board space utilization and up to two times more power density.  At the same time, Infineon will take on ROHM’s DOT-247 package with SiC half-bridge configuration to develop a compatible package. That will expand Infineon’s recently announced Double TO-247 IGBT portfolio to include SiC half-bridge solutions. ROHM's advanced DOT-247 delivers higher power density and reduces assembly effort compared to standard discrete packages. Featuring a unique structure that integrates two TO-247 packages, it enables to reduce thermal resistance by approximately 15 percent and inductance by 50 percent compared to the TO-247. The advantages bring 2.3 times higher power density than the TO-247.  ROHM and Infineon plan to expand their collaboration in the future to include other packages with both silicon and wide-bandgap power technologies such as SiC and gallium nitride (GaN). This will further strengthen the relationship between the two companies and provide customers with an even broader range of solutions and sourcing options.  Semiconductors based on SiC have improved the performance of high-power applications by switching electricity even more efficiently, enabling high reliability and robustness under extreme conditions, while allowing for even smaller designs. Using ROHM’s and Infineon’s SiC products, customers can develop energy-efficient solutions and increase power density for applications such as electric vehicle charging, renewable energy systems and AI data centers.  About ROHM  ROHM, a leading semiconductor and electronic component manufacturer, was established in 1958. From the automotive and industrial equipment markets to the consumer and communication sectors, ROHM supplies ICs, discretes, and electronic components featuring superior quality and reliability through a global sales and development network. Our strengths in the analog and power markets allow us to propose optimized solutions for entire systems that combine peripheral components (i.e., transistors, diodes, resistors) with the latest SiC power devices as well as drive ICs that maximize their performance.  Further information is available at https://www.rohm.com  About Infineon  Infineon Technologies AG is a global semiconductor leader in power systems and IoT. Infineon drives decarbonization and digitalization with its products and solutions. The company has around 58,060 employees worldwide and generated revenue of about €15 billion in the 2024 fiscal year (ending 30 September). Infineon is listed on the Frankfurt Stock Exchange (ticker symbol: IFX) and in the USA on the OTCQX International over-the-counter market (ticker symbol: IFNNY).
Key word:
Release time:2025-09-29 14:53 reading:729 Continue reading>>

Turn to

/ 9

  • Week of hot material
  • Material in short supply seckilling
model brand Quote
CDZVT2R20B ROHM Semiconductor
TL431ACLPR Texas Instruments
MC33074DR2G onsemi
BD71847AMWV-E2 ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
model brand To snap up
TPS63050YFFR Texas Instruments
BP3621 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
BU33JA2MNVX-CTL ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code